XE-E: Thermodynamics

Section 1: Basic Concepts
Continuum and macroscopic approach; thermodynamic systems (closed and open); thermodynamic properties and equilibrium; state of a system, state postulate for simple compressible substances, state diagrams, paths and processes on state diagrams; concepts of heat and work, different modes of work; zeroth law of thermodynamics; concept of temperature.

Section 2: First Law of Thermodynamics
Concept of energy and various forms of energy; internal energy, enthalpy; specific heats; first law applied to elementary processes, closed systems and control volumes, steady and unsteady flow analysis.

Section 3: Second Law of Thermodynamics
Limitations of the first law of thermodynamics, concepts of heat engines and heat pumps/refrigerators, Kelvin-Planck and Clausius statements and their equivalence; reversible and irreversible processes; Carnot cycle and Carnot principles/theorems; thermodynamic temperature scale; Clausius inequality and concept of entropy; microscopic interpretation of entropy, the principle of increase of entropy, T-s diagrams; second law analysis of control volume; availability and irreversibility; third law of thermodynamics.

Section 4: Properties of Pure Substances
Thermodynamic properties of pure substances in solid, liquid and vapor phases; P-v-T behaviour of simple compressible substances, phase rule, thermodynamic property tables and charts, ideal and real gases, ideal gas equation of state and van der Waals equation of state; law of corresponding states, compressibility factor and generalized compressibility chart.

Section 5: Thermodynamic Relations
T-ds relations, Helmholtz and Gibbs functions, Gibbs relations, Maxwell relations, Joule-Thomson coefficient, coefficient of volume expansion, adiabatic and isothermal compressibilities, Clapeyron and Clapeyron-Clausius equations.

Section 6: Thermodynamic Cycles
Carnot vapor cycle, ideal Rankine cycle, Rankine reheat cycle, air-standard Otto cycle, air-standard Diesel cycle, air-standard Brayton cycle, vapor-compression refrigeration cycle.

Section 7: Ideal Gas Mixtures
Dalton’s and Amagat’s laws, properties of ideal gas mixtures, air-water vapor mixtures and simple thermodynamic processes involving them; specific and relative humidities, dew point and wet bulb temperature, adiabatic saturation temperature, psychrometric chart.